CLICK HERE FOR THOUSANDS OF FREE BLOGGER TEMPLATES »

Senin, 26 Oktober 2009

MICROPHONE NIRKABEL



Wirelless microphone : Microphone nirkabel yakni microphone yang koneksinya tidak

menggunakan kabel. Mentransmisikan sinyalnya menggunakan pemancar radio FM kecil yang terhubung kepada receivernya dalam satu sound system.

VTR : Video Tape Recorder yaitu alat yang berfungsi sebagai player dan atau recorder dari DV Cam





Sabtu, 10 Oktober 2009

JENIS-JENIS MICROPHONE

SHOTGUN MIC



Michrophone ini bentuknya ramping dan panjang mirip seperti laras senapan karakteristiknya yang sering didapati Condercer Microphune. Sifatnya mempertajam suara jadi suara lemah dan jauh akan ditangkap oleh microphone ini oleh karena itu dengan shotgun mic tidak perlu mendekat pada sasaran obyek karena daya tangkap mic. Shotgun directional lurus (satu arah).
CONTACT MIC

Benda ini pada dasarnya adalah sebuah microphone. Tapi, berbeda dengan fungsi microphone yang biasa digunakan untuk menyanyi, yang satu ini mampu menyadap suara di level yang lebih ringkih. Contact Mic ini dirancang untuk mampu menembus gelombang suara redam yang secara virtual sanggup menangkap gelombang suara di bawah permukaan solid tertentu. Dengan begitu, microphone ini dapat pula digunakan sebagai alat pendeteksi bom.

Benda ini dibuat terpadu dengan contact element, dan memiliki automatic gain control internal sehingga tidak lagi memerlukan tombol-tombol penyesuaian. Contact Mic didisain untuk mengkonversi menit getaran-getaran ke gelombang suara dan kemudian dapat diterjermahkan ke dalam band audio yang bisa didengarkan melalui headphone atau alat penerima suara lainnya. Dengan begitu, benda ini bisa memberi informasi mengenai apa yang janggal sedang terjadi.

Untuk negara-negara yang rawan bom (d
an gempa), alat ini bisa jadi sangat bermanfaat. Tentu akan lebih banyak dibutuhkan untuk keperluan korporasi dan di lembaga-lembaga pengamanan atau penelitian, meski tidak tertutup kemungkinan digunakan untuk kebutuhan personal. Yah, siapa tahu ada yang penasaran ingin tahu apakah tetangga misterius yang tinggal di sebelah rumahnya adalah seorang teroris.
HANDHELD MIC

Microphone ini cara perekamanya sama dengan mic yang lain na

mun handheld mic dirancang lebih besar. Ukuran mic ini sebesar genggaman tangan dan dipergunakan untuk keperluan lapangan pada saat peliputan interview. Hendheld mic karakteristiknya Dynamic michrophone sifatnya meredam suara desis.suara yang tajam untuk mengurangi gangguan suara utama yang direkam,jadi bukan menghilangkan suara-suara bising.


PERSONAL MICROPHONE

Lavalier mic/personal mic/clip-on mic adalah perekam suara yang bentuknya kecil dan penjepit dipergunakan umumnya untuk wawancara dalam studio.lavalier itu “clip mic”,mic bias yang memiliki karakteristik omni,di negara Eropa populer dengan sebutan “Lapel”. Di sebut Lapel karena biasa dijepit di kerah baju,jas ataupun menempel dibalik dasi. Jarak pemasangannya sekitar 6 sampai 8 inci dibawah dagu sekitar 25cm – 30 cm.

PERBEDAAN OMNIDIRECTIONAL, BIRECTIONAL, UNIDIRECTIONAL MICS .

Omnidirectional


Sebuah Omnidirectional (atau nondirectional) respons mikrofon umumnya dianggap bola sempurna dalam tiga dimensi.
Dalam dunia nyata, hal ini tidak terjadi.Seperti arah mikrofon, kutub pola untuk sebuah "Omnidirectional" mikrofon adalah fungsi dari frekuensi. Tubuh mikrofon tidak tak terbatas dan kecil, sebagai akibatnya, ia cenderung mendapatkan dengan caranya sendiri terhadap suara yang datang dari belakang, menyebabkan sedikit merata dari respons kutub. Merata ini meningkat sejalan dengan diameter mikrofon (dengan asumsi itu silinder) mencapai panjang gelombang frekuensi yang bersangkutan. Oleh karena itu, diameter terkecil mikrofon akan memberikan yang terbaik karakteristik Omnidirectional pada frekuensi tinggi.

Panjang gelombang suara pada 10 kHz sedikit lebih dari satu inci (3,4 cm) sehingga pengukuran terkecil mikrofon sering 1 / 4 "(6 mm) diameter, yang secara praktis menghilangkan directionality bahkan sampai frekuensi tertinggi. Omnidirectional mikrofon, tidak seperti cardioids , jangan menggunakan rongga resonan sebagai keterlambatan, dan sehingga dapat dianggap sebagai "murni" mikrofon dalam hal warna rendah; mereka menambahkan sedikit sekali suara asli. Karena tekanan-sensitif mereka juga bisa sangat datar memiliki respons frekuensi rendah ke bawah sampai 20 Hz atau di bawah. Pressure-mikrofon sensitif juga menanggapi apalagi suara angin dari arah (kecepatan sensitif) mikrofon.

Bidirectional Microphones

Mikrofon bidirectional. Tipe ketiga mikrofon pola polaritas adalah dua arah (juga dikenal sebagai Gambar 8). Sebuah bidirectional mic akan mengambil suara dari kedua bagian depan dan belakang, tetapi bukan dari sepanjang jalan sekitar. Mereka tidak mengambil suara dari sisi-sisi baik sama sekali. Mics bidirectional sering digunakan untuk memainkan instrumen miking dua bagian secara bersamaan, misalnya bagian tanduk. Ketika seorang bidirectional mic ditempatkan di antara dua tanduk pemain dengan mic sisi tegak lurus terhadap para pemain, itu akan mengambil suara dari tanduk dan sangat sedikit lain. Bidirectional mics dibuat dalam tiga jenis mikrofon: dinamis, kondensor, dan pita.

Unidirectional mics

Sebuah mikrofon searah sensitif terhadap suara dari satu arah. Diagram di atas menggambarkan beberapa pola-pola ini. Mikrofon menghadap ke atas di masing-masing diagram. Intensitas suara frekuensi tertentu diplot untuk sudut-sudut radial 0-360 °. (Professional diagram menunjukkan sisik ini dan menyertakan beberapa plot pada frekuensi yang berbeda. The diagram yang diberikan di sini hanya memberikan gambaran mengenai pola khas bentuk, dan nama-nama mereka.)





[+/-] Lebih lanjutnya...

Kamis, 2009 Oktober 08

Menata suara di studio TV

1. Mengidentifikasi berbagai jenis dan kualitas suara
2. Mengidentifikasi karakter mikropon
3. Menggunakan mikropon nirkabel
4. Membandingkan kualitas suara Stereo, Sorround dan Quadraphonic
5. Mengidentifikasi teknologi digital audio untuk TV
6. Mengoperasikan Audio Boards, Mixers dan Consol





Sabtu, 26 Juli 2008



Proses Alir Kerja Pemancar TV

 ALIR KERJA PEMANCAR TV

Pemancar televisi UHV dan VHF

A. Kualitas Penerimaan Siaran Televisi
Besarnya signal penerimaan siaran televisi disuatu tempat dipengaruhi beberapa parameter dari stasiun pemancar yang meliputi antara lain :
Daya pancar
Gain dan sistem antena pemancar
Jarak lokasi pemancar dengan lokasi penerimaan
Frequency saluran yang digunakan
Gain dan antena sistem dari pesawat penerima
Profile chart antara antena pemancar dengan antena pesawat penerima
Ketinggian lokasi pemancar terhadap lokasi penerima
Apabila dinyatakan dalam rumus, dapat kita lihat dengan jelas parameter-parameter yang berpengaruh pada penerimaan signal siaran televisi :
Pfs(db) = Po(db) + Gant Tx(db) – Apl(db) + Gant Rx(db) 
Pfs(db) : Level Field Strength dalam satuan dB
Po(db) : Power Output pemancar dalam satuan dB
Gant Tx(db) : Gain antena pemancar dalam satuan dB
Apl(db) : Anttenuasi Path Loss dalam satuan dB
Gant Rx(db) : Gain antena penerima dalam satuan dB

B. Daya Pancar
Kiranya semua orang tahu bahwa besarnya daya pancar, akan mempengaruhi besarnya signal penerimaan siaran televisi disuatu tempat tertentu pada jarak tertentu dari stasiun pemancar televisi. Semakin tinggi daya pancar semakin besar level kuat medan penerimaan siaran televisi. Namun demikina besarnya penerimaan siaran televisi tidak hanya dipengaruhi oleh besarnya daya pancar.
C. Gain Antena
Besarnya Gain antena dipengaruhi oleh jumlah dan susunan antena serta frequency yang digunakan. Antena pemancar UHF tidak mungkin digunakan untuk pemancar TV VHF dan sebaliknya, karena akan menimbulkan VSWR yang tinggi. Sedangkan antena penerima VHF dapat saja untuk menerima signal UHF dan sebaliknya, namun Gain antenanya akan sangat mengecil dari yang seharusnya.
D. Path Loss (redaman Ruang)
Path Loss dapat diartikan sebagai redaman propagasi, yaitu besarnya daya yang hilang dalam menempuh jarak tertentu. Besarnya redaman disamping ditentukan oleh kondisi alam seperti tidak adanya halangan antara pemancar dengan penerima dan kondisi altitude dari masing-masing lokasi maupun antara kedua lokasi, redaman sangat dipengaruhi oleh jarak antara pemancar dengan penerima dan frekwensi yang digunakan. Dengan tanpa memperhitungkan kondisi alam dan lokasi dimana pemancar dan penerima berada, besarnya Path Loss dapat dihitung dengan menggunakan rumus “Free Space Loss” sebagai berikut :
A pl(db) = +32,5(db) +(20 log D (km))(db) + (20 log F (Mhz))(db) 

E. Kebutuhan Daya Pancar
Besarnya daya pancar yang diperlukan untuk menjangkau sasaran pada jarak tertentu dipengaruhi antara lain oleh besarnya frekwensi, ketinggian antena pemancar dan antena penerima serta profile antara lokasi pemancar dengan lokasi penerima, serta besarnya level kuat medan yang diharapkan dapat diterima oleh pesawat penerima. Besarnya level kuat medan penerimaan siaran televisi untuk frekwensi band tertentu, CCIR/ ITU-R memberikan rekomendasi yang dapat digunakan sebagai referensi, namun demikina di setiap negara dapat saja memiliki kebijaksanaan tersendiri tentang kualitas penerimaan siaran televisi yang dikaitkan dengan persyaratan kuat medan minimum. Sampai saat ini di Indonesia belum ada kebijaksanaan khusus mengenai persyaratan minimum kuat medan pancaran siaran televisi yang harus dipenuhi untuk suatu penerimaan siaran televisi yang dianggap baik. Sementara itu, untuk kebutuhan perencanaan pengembangan perluasan jangkauan digunakan rekomendasi CCIR/ ITU-R sebagai acuan. Dibawah ini sebagai contoh disampaikan daftar kuat medan minimum menurut rekomendasi CCIR dan daftar kuat medan minimum yang digunakan oleh negara Australia.
Untuk menganalisa perbedaan kebutuhan daya pancar antara pemancar VHF dengan UHF dapat dilakukan dengan menggunakan perhitungan propagasi gelombang pada “free space” ataupun menggunakan chart/ grafik propagasi yang disusun oleh CCIR serta dengan memegang variabel-variabel tertentu dalam kondisi yang sama. Pada kesempatan ini marilah kita lakukan perhitungan dengan menggunakan rumus propagasi gelombang pada “free space” dengan variabel-variabel yang dipegang tetap yaitu sebagai berikut :
Jarak pemancar dengan penerima = 20 Km
Antara pemancar dan penerima tidak ada halangan/ obstacle dan ketinggian antena pemancar dan penerima tidak diperhitungkan
Frekwensi VHF = 200Mhz dan UHF = 500Mhz
Pfs = Field strength untuk VHF = 75dbuV/m = -30dBm/Z = 50Ohm
Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm 
Gant = Gain antena = 10dB
Po = power output pemancar
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Dengan data sebagaimana tersebut diatas, dapat dihitung kebutuhan power output VHF yang dapat menjangkau sasaran sejauh 20Km adalah sebagai berikut :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db) 
Po(db) = -32bdm – 10db + 32,5db + 20log20 + 20log200 
Po(db) = -32bdm – 10db + 32,5db + 26db + 46db 
Po(db) = 62,5 dbm = 2,5dbk = 1,8KW
Sedangkan untuk pemancar UHF diperlukan power output sebesar :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db) 
Po(db) = -27bdm – 10db + 32,5db + 20log20 + 20log500 
Po(db) = -27bdm – 10db + 32,5db + 26db + 54db 
Po(db) = 75,5 dbm = 15,5dbk = 35KW
Apabila dilakukan perhitungan dengan menggunakan grafik rumus propagasi gelombang pada “free space” dengan variable-variable yang dipegang tetap yaitu sebagai berikut :
Jarak pemancar dengan penerima = 20Km
Antara pemancar dan penerima tidak ada halangan/ obstacle
Ketinggian antena pemancar = 150meter, dan ketinggian antene penerima penerima = 10meter
Pfs = Field strength untuk VHF = 75dbuV/m = -32dBm/Z = 50Ohm
Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm 
Gant = Gain antena = 10dB
Po = Power output pemancar
Dengan data sebagaimana tersebut diatas dan dengan menggunakan standard CCIR, besarnya daya pancar dapat dihitung sebagai berikut :
1. Perhitungan Daya Pancar Pemancar VHF,Dengan menggunakan grafik pada gambar 1, dapat dijelsakan bahwa dengan 1 Kw atau 0dbk ERP pada jarak 20Km dengan ketinggian antena pemancar 150 meter dapat diperoleh field strength sebesar 63dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 75dbuV/m pada jarak 20Km diperlukan ERP sebesar 12dBk dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar VHF yang diperlukan sebesar 2dBk atau 1,58KW
2. Perhitungan Daya Pancar Pemancar UHF,Dengan menggunakan grafik pada gambar 2, dapat dijelaskan bahwa dengan 1 KW atau 0dbk ERP pada jarak 20Km denagn ketinggian antena pemancar 150 meter dapat diperoleh Field Strength sebesar 61dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 19dbk, dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar UHF yang diperlukan adalah sebesar 9dbk atau 8KW Dari uraian tersebut diatas dapat disampaikan bahwa untuk mendapatkan kualitas penerimaan gambar dan suara yang baik pada jarak yang sama diperlukan daya pancar yang lebih tinggi apabila menggunakan pemancar UHF dari pada apabila menggunakan pemancar VHF.
F. Biaya Investasi
Penggunaan pemancar UHF untuk menjangkau daerah sasaran yang sama jauhnya, diperlukan biaya investasi yang jauh lebih besar daripada menggunakan pemancar VHF. Hal ini sangat wajar karena untuk menjangkau sasaran tertentu pemancar UHF memerlukan daya yang 3 s/d 5 kali lebih besar daripada daya pemancar VHF. G. Kualitas Kualitas hasil pencaran dari pemancar VHF dibandingkan dengan kualitas hasil pancaran dari pemancar UHF adalah sama asalkan keduanya memenuhi persyaratan dan spesifikasi yang telah ditentukan. Perbedaan yang mungkin terjadi tudak akan dapat dilihat oleh mata dan didengar oleh telinga, tetapi hanya dapat diketahui dengan mengunakan alat ukur. Tidak adanya perbedaan kualitas penerimaan gambar dan suara dari pemancar televisi VHF dan UHF ini barangkali dapat ditanyakan kepada yang sempat melihat siaran televisi Singapore, Malaysia, Jepang ataupun Jerman, dimana perbedaan kualitas penerimaan siaran televisi VHF dan UHF tidak dapat di indentifikasi.
PENGGUNAAN PEMANCAR VHF OLEH TVRI
Berdasarkan peraturan internasional yang berkaitan dengan pengaturan penggunaan frekwensi (Radio Regulation) untuk penyiaran televisi pada pita frekwensi VHF dan UHF. Sesuai dengan sistem pertelevisian yang dianaut oleh indonesia yaitu CCIR B dan G maka penggunaan frekwensi tersebut telah diatur sebagai berikut :
VHF band I : saluran 2 dan 3VHF band III : saluran 4 s/d 11VHF band IV : saluran 21 s/d 37VHF band V : saluran 38 s/d 70
Sejarah pertelevisian di Indonesia diawali pada tahun 1962 oleh TVRI di Jakarta dengan menggunakan pemancar televisi VHF. Pembangunan pemancar TVRI berjalan dengan cepat terutama setelah diluncurkannya satelite palapa pada tahun 1975. Pada tahun 1987, yaitu lahirnya stasiun penyiaran televisi swasta pertama di Indonesia, stasiun pemancar TVRI telah mencapai jumlah kurang lebih 200 stasiun pemancar yang keseluruhannya menggunakan frekwensi VHF, dan pemancar TV swasta pertama tersebut diberikan alokasi frekwensi pada pita UHF. Kebijaksanaan penggunaan pita frekwensi VHF untuk TVRI dan UHF untuk swasta pada saat itu dilakukan dengan beberapa pertimbangan yang menguntungkan negara sebagai berikut :
Jumlah saluran TV pada pita VHF yang jumlahnua hanya 10 saluran hampir seluruhnya telah digunakan untuk 200 stasiun pemancar terutama di pulau Jawa, maka pemancar TV swasta yang pertama dan berlokasi di Jakarata dialokasikan pada pita frekwensi UHF.
Pemancar VHF lebih ekonomis dan tidak berbeda kualitasnya dengan pemancar TV UHF sangat cocok unruk stasiun penyiaran pemerintah yang terbatas dana pembangunannya.
Kesinambungan pemeliharaan dan penggantian pemancar TVRI yang 70% adalah buatan LEN sangat didukung oleh hasil produksi LEN yang belum memproduksi pemancar UHF.
TVRI terus memperluas jangkauannya sampai ke pelosok tanah air dimana saat itu masih banyak masyarakat di daerah yang belum mampu membeli pesawat TV berwarna dan pada saat itu pesawat hitam putih hanya dapat menerima saluran VHF






PROSES KERJA PESAWAT TV 

Prinsip Kerja Televisi

Bagaimanakah Televisi Bekerja? 

Sebelum kita mengetahui prinsip kerja pesawat televisi, ada baiknya kita mengetahui sedikit tentang perjalanan objek gambar yang biasa kita lihat di layar kaca. Gambar yang kita lihat di layar televisi adalah hasil produksi dari sebuah kamera

Objek gambar yang di tangkap lensa kamera akan dipisahkan berdasarkan tiga warna dasar, yaitu merah (R = red), hijau (B = blue). Hasil tersebut akan dipancarkan oleh pemancar televisi (transmiter). Pada sestem pemancar televisi, informasi visual yang kita lihat pada layar kaca pada awalnya di ubah dari objek gambar menjadi sinyal listrik. Sinyal listrik tersebut akan ditransmisikan oleh pemancar ke pesawat penerima (receiver) televisi.

PRINSIP KERJA TELEVISI 
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi. 
Selain gambar, juga membawa suara ? 
Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi.Modulasi adalah sinyal bidang frekuensi dasar (base band). 
Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75khz melainkan 25 khz. 
Saluran dan Standar Pemancar Televisi 
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial. 
VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ. 
VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ. 
UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ. 
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebu




TUGAS MULTIMEDIA PAK MOKO


SEJARAH PENEMUAN TEKNOLOGI TV
Sejarah Televisi

24 09 2007





Pada tahun 1873 seorang operator telegram menemukan bahwa cahaya mempengaruhi resistansi elektris selenium. Ia menyadari itu bisa digunakan untuk mengubah cahaya kedalam arus listrik dengan menggunakan fotosel silenium (selenium photocell)

Kemudian piringan metal kecil berputar dengan lubang-lubang didalamnya ditemukan oleh seorang mahasiswa yang bernama Paul Nipkow di Berlin, Jerman pada tahun 1884 dan disebut sebagai cikal bakal lahirnya televisi. Sekitar tahun 1920 John Logie Baird dan Charles Francis Jenkins menggunakan piringan karya Paul Nipkow untuk menciptakan suatu sistem dalam penangkapan gambar, transmisi, serta penerimaannya. Mereka membuat seluruh sistem televisi ini berdasarkan sistem gerakan mekanik, baik dalam penyiaran maupun penerimaannya. Pada waktu itu belum ditemukan komponen listrik tabung hampa (Cathode Ray Tube)


Televisi elektronik agak tersendat perkembangannya pada tahun-tahun itu, lebih banyak disebabkan karena televisi mekanik lebih murah dan tahan banting. Bukan itu saja, tetapi juga sangat susah untuk mendapatkan dukungan finansial bagi riset TV elektronik ketika TV mekanik dianggap sudah mampu bekerja dengan sangat baiknya pada masa itu. Sampai akhirnya Vladimir Kosmo Zworykin dan Philo T. Farnsworth berhasil dengan TV elektroniknya. Dengan biaya yang murah dan hasil yang berjalan baik, orang-orang mulai melihat kemungkinan untuk

Vladimir Zworykin, yang merupakan salah satu dari beberapa pakar pada masa itu, mendapat bantuan dari David Sarnoff, Senior Vice President dari RCA (Radio Corporation of America). Sarnoff sudah banyak mencurahkan perhatian pada perkembangan TV mekanik, dan meramalkan TV elektronik akan mempunyai masa depan komersial yang lebih baik. Selain itu, Philo Farnsworth juga berhasil mendapatkan sponsor untuk mendukung idenya dan ikut berkompetisi dengan Vladimir.



TV ELEKTRONIK

Baik Farnsworth, maupun Zworykin, bekerja terpisah, dan keduanya berhasil dalam membuat kemajuan bagi TV secara komersial dengan biaya yang sangat terjangkau. Di tahun 1935, keduanya mulai memancarkan siaran dengan menggunakan sistem yang sepenuhnya elektronik. Kompetitor utama mereka adalah Baird Television, yang sudah terlebih dahulu melakukan siaran sejak 1928, dengan menggunakan sistem mekanik seluruhnya. Pada saat itu sangat sedikit orang yang mempunyai televisi, dan yang mereka punyai umumnya berkualitas seadanya. Pada masa itu ukuran layar TV hanya sekitar tiga sampai delapan inchi saja sehingga persaingan mekanik dan elektronik tidak begitu nyata, tetapi kompetisi itu ada disana.

TV RCA, Tipe TT5 1939, RCA dan Zworykin siap untuk program reguler televisinya, dan mereka mendemonstrasikan secara besar-besaran pada World Fair di New York. Antusias masyarakat yang begitu besar terhadap sistem elektronik ini, menyebabkan the National Television Standards Committee [NTSC], 1941, memutuskan sudah saatnya untuk menstandarisasikan sistem transmisi siaran televisi di Amerika. Lima bulan kemudian, seluruh stasiun televisi Amerika yang berjumlah 22 buah itu, sudah mengkonversikan sistemnya kedalam standard elektronik baru.

Pada tahun-tahun pertama, ketika sedang resesi ekonomi dunia, harga satu set televisi sangat mahal. Ketika harganya mulai turun, Amerika terlibat perang dunia ke dua. Setelah perang usai, televisi masuk dalam era emasnya. Sayangnya pada masa itu semua orang hanya dapat menyaksikannya dalam format warna hitam putih.


TV BERWARNA
Sebenarnya CBS sudah lebih dahulu membangun sistem warnanya beberapa tahun sebelum rivalnya, RCA. Tetapi sistem mereka tidak kompatibel dengan kebanyakan TV hitam putih diseluruh negara. CBS yang sudah mengeluarkan banyak sekali biaya untuk sistem warna mereka harus menyadari kenyataan bahwa pekerjaan mereka berakhir sia-sia. RCA yang belajar dari pengalaman CBS mulai membangun sistem warna menurut formatnya. Mereka dengan cepat membangun sistem warna yang mampu untuk diterima pada sistem warna dan sistem hitam putih. Setelah RCA memamerkan kemampuan sistem mereka, NTSC membakukannya untuk siaran komersial thn 1953.

Berpuluh tahun kemudian hingga awal milenium baru abad 21 ini, orang sudah biasa berbicara lewat telepon selular digital dan mengirim e-mail lewat jaringan komputer dunia, tetapi teknologi televisi pada intinya tetap sama. Tentu saja ada beberapa perkembangan seperti tata suara stereo dan warna yang lebih baik, tetapi tidak ada suatu lompatan besar yang mampu untuk menggoyang persepsi orang tentang televisi. Tetapi semuanya secara perlahan mulai berubah, televisi secara bertahap sudah memasuki era digital.

Dikutip dari : http://misteridigital.wordpress.com





Kamis, 05 Juni 2008

tugas bu Ari

LABEL FILM


Di Indonesia saat ini tidak ada aturan baku mengenai pelabelan terhadap titel-titel hiburan seperti acara televisi, film atau permainan. Walaupun mungkin ada, tetapi saya tidak melihat aturan-aturan tersebut ditegakkan. Dulu, setiap film yang diputar di bioskop memiliki rating: semua umur, 13 tahun ke atas atau 17 tahun ke atas. Walaupun demikian saya tidak pernah melihat aturan-aturan tersebut diikuti oleh para penonton, masih banyak penonton di bawah usia yang memasuki ruang bioskop yang memutar film dewasa. Dan akhir-akhir ini saya juga tidak melihat adanya pelabelan tersebut pada film-film yang diputar di bioskop.
Jika bukan orang tua, siapa lagi yang dapat mengawasi jenis hiburan yang dikonsumsi oleh anak-anaknya? Jika anda memiliki anak, cobalah beri pengertian terhadap jenis-jenis pelabelan supaya anak anda dapat mengetahui titel-titel mana saja yang pantas dikonsumsi olehnya. Berikut ini adalah jenis-jenis pelabelan media hiburan yang perlu anda semua perkenalkan kepada anak-anak anda.
Acara Televisi
Beberapa stasiun televisi saat ini menggunakan label pada acara-acara yang tidak pantas untuk dikonsumsi oleh anak-anak di bawah umur. Label ini biasanya diletakkan pada pojok kiri atas atau kanan atas layar televisi. Sayangnya pelabelan ini dilakukan secara sukarela oleh stasiun televisi dan tidak ada standardisasi antara stasiun televisi.
BO (bimbingan orang tua). Temanilah anak-anak anda dalam menonton acara televisi yang memiliki label BO. Berilah anak-anak anda informasi secukupnya selama mereka menonton acara televisi tersebut.
DW, 17 atau 17+ (khusus dewasa). Jangan izinkan anak-anak anda yang masih di bawah umur (di bawah 17 tahun) untuk menonton tayangan yang memiliki label tersebut. Gantilah saluran televisi jika anak-anak anda tetap ingin menonton televisi.
Film Pada DVD, VCD, Laserdisc atau Kaset Video
Kebanyakan DVD dan VCD film yang beredar di pasaran saat ini tidak diimpor secara legal, sehingga proses masuknya titel-titel itu pun tidak melalui Badan Sensor Film. Walaupun demikian, sebagian besar titel-titel bajakan tersebut memiliki sampul yang sama dengan titel aslinya yang menyertakan pelabelan dari MPAA. Pada DVD, label biasanya diletakkan di bagian bawah dari sampul belakang DVD.
Ada lima jenis pelabelan dari MPAA:
G - General Audiences. Film ini dapat dinikmati oleh semua umur, termasuk anak anda.
PG - Parental Guidance Suggested. Beberapa bagian tidak pantas dikonsumsi oleh anak-anak. Sebaiknya temani anak-anak anda selama menonton film ini.
PG-13 - Parents Strongly Cautioned. Beberapa bagian tidak pantas dikonsumsi oleh anak-anak di bawah 13 tahun. Laranglah anak-anak anda yang di bawah 13 tahun untuk menonton film ini.
Rated R - Restricted. Temanilah anak-anak anda yang di bawah 17 tahun selama menonton film dengan label ini.
Rated NC-17. Laranglah anak-anak anda yang di bawah 17 tahun untuk menonton film dengan label ini.
NR - Not Rated. Film ini belum sempat diberi label oleh MPAA. Carilah informasi mengenai label film ini dari situs web seperti IMDB sebelum mengizinkan anak anda menonton film ini. Jika tidak ada atau belum ada label, sebaiknya anda coba dahulu menonton tayangan ini sendiri tanpa anak anda atau hindari anak-anak anda menonton film ini.
Film Bioskop






style="position:absolute;top:0;left:0;z-index:9">MySpace<br />Layouts